Abstract

Thin films of LiH and its corrosion products were studied using temperature programmed decomposition (TPD), x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Thin films were grown on Ni(100) in an ultra high vacuum system using an electron beam evaporator. Characteristic Li KLL AES peaks were identified for Li, LiH, Li2O and LiOH which facilitated identification of thin film composition. XPS of the O 1s region revealed three distinct chemical shifts which were attributed to Li2O, LiOH and chemisorbed H2O. We show that exposing LiH to very low H2O partial pressures results in formation of LiOH/Li2O domains on LiH. We also show that these XPS peaks can be linked to reaction mechanisms in the TPD profiles. TPD traces have been explicitly modelled to determine the activation energies of the reactions and compare favourably with previous measurements on bulk LiH samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.