Abstract

As the science and process applications of supercritical water (SCW) and supercritical water oxidation (SCWO) become more thoroughly understood, it is logical to envision the use of the SCWO process by diverse industries and public wastewater and sludge generators. This technology can be adapted to accomplish either pre or end-of-pipe wastewater treatment. There is a need to destroy both military and civilian hazardous waste, and urgency, mandated by public concern over traditional waste handling methodologies, to identify safe and efficient alternative technologies. By capitalizing on the properties of water above its critical point, 374 °C and 22.4 MPa for pure water, this technology provides rapid and complete oxidation with high destruction efficiencies at typical operating temperatures. Nevertheless, corrosion of the materials of fabrication is a serious concern. While iron-based alloys and nickel-based alloys are generally considered important for service applications, results from laboratory and pilot-scale SCWO systems presently in operation indicate that they will not withstand some aggressive feeds. Significant weight loss and localized effects, including stress corrosion cracking (SCC) and dealloying, are seen in chlorinated environments. This work assesses the corrosion characteristics of iron-based stainless steels exposed to high supercritical temperatures in a chlorinated military waste containing salts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.