Abstract

Abstract For the first time, bronze/SiC/mica hybrid composite has been manufactured using powder metallurgy method. Mixture – process variable design has been applied to design of experiments and optimization of the composite composition, as well as the production process variables (compaction pressure and sintering temperature) to attain superior corrosion resistance. This involved mixing different compositions of bronze, SiC, and mica powders, which were subsequently subjected to varied pressures and temperatures during the pressing and sintering stages, all in accordance with the experimental design plan. The microstructure, chemical composition, and elemental distribution of the samples were examined using scanning electron microscope equipped by energy dispersive X-ray analyzer, and an optical microscope. In order to study the corrosion resistance, potentiodynamic polarization test and electrochemical impedance spectroscopy were performed in 3.5 wt.% NaCl solution. The results revealed that co-incorporation of SiC and mica particles in Cu–10Sn bronze matrix increases the corrosion resistance, with a synergistic effect between these particles. The result of optimization process showed that the highest corrosion resistance could be achieved for the composite with the composition of Cu–10Sn/9.85SiC/0.67mica. This outcome was subsequently validated through experimental procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call