Abstract

Abstract The effect SiC particle sizes (3 µm, 9 µm 29 µm and 45 µm) at 2.5% weight content on the corrosion resistance of 1060 aluminum in sulfate and sulfate-chloride solution was studied by potentiodynamic polarization, open circuit potential measurement and optical microscopy. Results showed the presence of SiC increases the susceptibility of monolithic aluminum (0 µm SiC particle size) to corrosion. In the sulfate solution, the corrosion rate values increased from 0.074 mm/y to 0.556 mm/y at 3 µm SiC particle size after which a progressive decrease in corrosion rate was observed to 0.240 mm/y at 45 µm SiC particle size. The corrosion rate value in sulfate-chloride solution increased significantly with increase in SiC particle size from 0.580 mm/y (0 µm) to 1.181 mm/y at 45 µm. Open circuit potential plots show monolithic aluminum in both solutions is the most electronegative, though potential transients were quite visible on the plot from sulfate-chloride solution. The surface of the corroded 1060AlSiC specimens agree with the results from electrochemical test with extensive morphological damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.