Abstract
Composites are one of the fastest developing materials. Research is particularly intensive in case of light metal alloys due to i.a. economic and environmental aspects. One of the innovative solutions is production of the metal matrix composites (MMC) by adding the cordierite ceramics obtained from fly ashes to magnesium alloys. In addition to obtaining new-generation materials with improved mechanical properties, also the waste is utilized which has a significant environmental and economic importance. In order to select the suitable operating conditions for such alloys, their corrosion resistance must be determined. This paper presents the results of corrosion resistance tests of AM60 magnesium alloy matrix composites reinforced with cordierite ceramics. The following issues were examined: (1) impact of the volume fraction of cordierite ceramics, 2 or 4 wt.%; (2) impact of surface roughness (two variants of surface treatment); and (3) impact of heat treatment on corrosion resistance of obtained composites. The results were compared with data recorded for the base AM60 alloy (which surface treatment was identical as of the composites). Moreover, the XRD and microanalysis of the chemical compositions by EDS method were applied to determine phases occurring in the investigated composites. Furthermore, the XRD was also performed in order to identify the corrosion products on the surface of the material. The test results indicate that the alloy reinforced with 2 wt.% addition of cordierite ceramics had the best corrosion resistance. It was also presented that surface and heat treatment affect the obtained results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.