Abstract
The aim of this work was to study the properties of Hf containing ZrCN protective layers in term of corrosion resistance, tribological and biocompatible properties, in order to improve the performance and service life of the orthopedic systems. The coatings were prepared by the DC magnetron sputtering technique in a mixture of Ar, N2 and CH4 gases, and analyzed for elemental composition and chemical bonds, crystalline structure, mechanical properties, surface morphology, electrochemical corrosion resistance and tribological performance in Ringer solution, being also evaluated for biocompatibility by in vitro tests. Two overstoichiometric film compositions, with non-metal/metal ratios of about 2.0 and 3.5, respectively, were obtained by varying the total gas (CH4+N2) flow rate, while maintaining constant the CH4/N2 flow ratio. The coatings characteristics were assessed in comparison to ZrCN reference coatings. The coatings were found to mainly consist of a mixture of crystalline metal carbonitride and free carbon phases. The coatings exhibited a pure fcc solid solution, with (111) preferred orientation and crystallite size in the range 8–16nm. The hardness values increased at Hf addition with 5.1–5.3GPa, while critical loads between 42 and 54N were measured at adhesion scratch test. Better corrosion resistance and tribological characteristics were obtained by incorporating Hf into the basic ZrCN fcc structure. The deposited coatings exhibited good biocompatibility characteristics during in vitro tests, whatever the non-metal/metal ratio. The highest cell viability was found for the ZrHfCN coatings with the highest (~3.5) non-metal/metal ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.