Abstract

Ti–6Al–4V ELI scaffolds produced by additive manufacturing and functionalized by anodizing technique in two different conditions have been evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical confocal microscopy, cyclic potentiodynamic polarization curves (CPP), and electrochemical impedance spectroscopy (EIS). Despite the differences in composition and morphological features between the anodic layers grown, the results revealed an improvement of the corrosion resistance in both anodized conditions regarding non-anodized samples. The non-anodized scaffolds presented pitting corrosion in phosphate-buffered saline solution at 37 °C. Conversely, the anodized samples prevented pitting corrosion and enhanced barrier properties by decreasing the passive current density in two orders of magnitude. EIS data show, anodized scaffolds presented good stability after 168 h of immersion time and better protective properties than non-anodized samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call