Abstract

Silane based products are becoming an interesting material for pre-treatment deposition, because, for the environmental compatibility, they can be used as substitutes of traditional pre-treatments like chromates. Silanes have been studied as new pre-treatments before organic coating deposition for many different metals, including aluminium, copper and zinc. In this work, some results concerning the properties of water-based silane pre-treatments on galvanized steel will be presented. Galvanized sheets obtained by continuous hot dip process were considered. A silane based bath containing a mixture of three different silanes were used for the pre-treatment deposition (Glycidoxypropiltrimethoxysilane, Tetraethoxysilane and Methyltriethoxysilane). The obtained pre-treatments were characterized by SEM observations, FT-IR and ToF-Sims analysis. The corrosion protection properties of the pre-treated galvanized samples were studied using industrial accelerated tests (like salt spray exposure) and electrochemical measurements (polarization curves and electrochemical impedance spectroscopy (EIS) measurements), as a function of the different curing conditions. The pre-treated galvanized sheets were further coated with an epoxy-polyester powder coating, in order to verify the adhesion promotion properties and the corrosion protection performances of the complete protective system. The coated samples were characterized by EIS measurements with artificial defect in order to study the interfacial stability (adhesion) in wet conditions and monitor the coating delamination. The electrochemical data were compared with adhesion measurements obtained by cathodic delamination tests. The electrochemical tests showed that the silane layer acts not only as a coupling agent between the inorganic substrate and the organic coating, but it also ensures a good barrier effect against water and oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.