Abstract

Hydrogenated diamond-like carbon and fluorocarbon films, deposited in a radio-frequency (rf) plasma reactor, have high chemical inertness and high electrical resistivity. These films, deposited on aluminum and type 301 stainless steel substrates at several rf power and feed gas flow rates using different gas phase precursors, were characterized for their pinhole density and stability with exposure to 0.6 M NaCl and 0.1 M NaCl and 0.1 M Na2SO4 solutions using electrochemical impedance spectroscopy and potentiostatic techniques, respectively. The results from electrochemical characterizations with salt water exposure indicated that films with high effective pore resistances (>108 Ω · cm2)* and high stability with exposure (<10% changes in capacitance values) can be obtained over a narrow range of process conditions and gas phase compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call