Abstract

Ceramic oxide coatings were prepared on an aluminum A356 alloy by a plasma electrolytic oxidation (PEO) technique under unipolar, bipolar and duplex unipolar/bipolar current modes. Cross-sectional morphologies of the coatings were studied using a scanning electron microscope (SEM). The corrosion behavior of the coated and uncoated samples was evaluated in ethanol-gasoline E85 fuels through potentiodynamic polarization and zero resistance ammeter (ZRA) testing methods. The results indicated that all the coatings had a better corrosion resistance compared to the uncoated substrate. The unipolar current mode created the PEO coating with a thicker coating microstructure and thus a better corrosion resistance, compared to a bipolar current mode. The duplex treatments of unipolar/bipolar or bipolar/unipolar current modes produced the best performance of the coatings against galvanic corrosions caused by a steel/Al coupling in the E85 fuel medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call