Abstract

Selective laser melting (SLM) can fabricate titanium and its alloy components with both elaborate internal architectures and complex shapes without geometric constrictions. The corrosion resistance of SLM-produced Ti and its alloy is crucial in some applications such as marine and biomedical environments. Here, potentiodynamic polarization and electrochemical impedance spectroscopy were used to evaluate the corrosion behaviors of SLM-produced Ti-6Al-4V in the four corrosive media (simulated body fluid (SBF), phosphate buffered saline solutions (PBS), 3.5 wt.% NaCl aqueous solution, 15 wt.% NaCl aqueous solution). The relevant results demonstrate the inferior corrosion resistance of the SLM-produced Ti-6Al-4V sheet compared with the commercial casting Ti-6Al-4V sheet in the four solutions. The corrosive current density of SLM-produced Ti-6Al-4V in PBS solution is 1.78 μA cm−2 and 7.065 μA cm−2 in 15 wt.% NaCl solution, and the values of charge transfer resistance for SLM-produced Ti-6Al-4V in the four solutions are in the order: 17.9 kΩ cm−2 (in 15 wt.% NaCl) < 25.2 kΩ cm−2 (in 3.5 wt.% NaCl) < 28.1 kΩ cm−2 (in SBF) < 39.8 kΩ cm−2 (in PBS), demonstrating the best protective performance of the passivation film on the SLM-produced Ti-6Al-4V sheet in PBS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.