Abstract

In this work, electrochemical corrosion behavior of a welded X100 pipeline steel was studied in a near-neutral pH solution by electrochemical scanning vibrating electrode technique combined with metallographic and scanning electron microscopy/energy dispersive x-ray analysis. Results demonstrated that a softening phenomenon occurs around the weld, and there is the high micro-hardness in base steel adjacent to weld. In particular, there is the highest micro-hardness in base steel containing acicular ferrite and bainite. Therefore, welding and the associated post-treatment on X100 steel alter dramatically the microstructure and mechanical property around weld, resulting in an enhanced micro-hardness in base steel. There are high and low local dissolution current densities at base steel and the welded zones, respectively. The difference between the maximum and minimum dissolution current densities decreases with time, and the distribution of dissolution current density tends to be uniform. Hydrogen-charging changes the local dissolution activity of the welded steel. Different from the hydrogen-free steel, there is the highest dissolution current density at heat-affected zone. It is reasonable to assume that the charged hydrogen would accumulate at heat-affected zone, and the synergism of hydrogen and local stress results in a high anodic dissolution rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.