Abstract

The microstructure and corrosion behavior of Hastelloy C-22 coatings produced using the high velocity oxygen fuel (HVOF) method have been determined and related to in-flight measurements of the particle velocity and temperature. Average particle temperatures ranged from 1280–1450 °C and velocities ranged from 565–640 ms−1. All of the coatings were greater than 98% of theoretical density and exhibited passivating behavior in 0.1 M HCl during cyclic potentiodynamic polarization testing. The passive current density was somewhat higher compared with wrought C-22 alloy and an active-passive peak attributed to the formation of a Cr-rich surface layer was observed. Resistance of corrosion and deposition efficiency improved as the particle temperature decreased. There was little effect of particle velocity on the corrosion behavior over the range of deposition conditions examined. Our results suggest that feedback control based on measurement of the particle temperature can be used to process coatings with optimum properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call