Abstract

Single-layer thin film coatings have been deposited on steel substrates and tested for their corrosion resistance. These coatings include TiN, ZrO2, TiO2, Al2O3, and MoS2, and it is proposed that they will act as barriers to provide protection to the steel canisters that are part of the dry cask storage system for high level nuclear waste. Corrosion testing was completed using electrochemical potentiodynamic polarization techniques in aerated 1 M NaCl solution. Results show an exponential increase in corrosion rate with increasing temperature and an exponential decrease in the passive breakdown overpotential, which is directly related to the ability of a material to form and sustain a corrosion-inhibiting passive film in a given environment. Additionally, kinetic activation parameters have been experimentally determined for each material, leading to predictive equations for corrosion rates. The bare and coated samples corrode analogously, indicative of pores allowing the coating and substrate to corrode simultaneously. The samples were also placed in circulating salt brines of varying pH as a supplementary corrosion testing mechanism to explore their corrosivity over extended time. Negligible weight change was experienced by the bare and coated steel samples over a period of 5 months. Increasing the coating thickness and the number of layers may provide higher resistance to uniform and localized corrosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call