Abstract

The corrosion of nickel with alloy additions of Si, Fe, and/or Mn up to 4 wt% has been studied in SO 2+O2/SO3 at 700°C. All alloy additions greatly improve the corrosion resistance of nickel in oxygen-rich atmospheres (O2 with about 4% SO2); the best improvements are achieved with Si, Fe+Si, and Fe+Mn+Si additions. High-purity nickel corrodes rapidly under these conditions; the scale then consists of NiO+Ni3S2, and the sulfide forms a three-dimensional network along the grain boundaries of the NiO grains and serves as the diffusion path for rapid outward migration of nickel. From studies of the microstructure and distribution of the alloying elements in the protective scales, it is proposed that the alloying additions exert their beneficial effects by accumulating/segregating at the grain boundaries of NiO (e.g., as silicates) and thereby influence the wetting characteristics and disrupt the sulfide network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.