Abstract

The corrosion of metal matrix composites (MMCs) is reviewed with emphasis on relating MMC corrosion behaviour to the electrochemical and chemical properties of MMC constituents. Galvanic corrosion between the reinforcement constituent and the metal matrix governs the corrosion behaviour of many MMCs. Other factors such as residual contaminants of MMC processing and the formation of interphases between reinforcement and matrix can also have pronounced effects on MMC corrosion behaviour. The lack of inherent resistance to corrosion of some MMCs requires that they be coated with organic or inorganic coatings for protection. Although the ultimate goal is to engineer and design MMCs to have good inherent resistance to corrosion (while maintaining excellent mechanical properties), no significant breakthroughs have been achieved in this area for MMCs that are typically prone to corrosion (e.g. graphite-aluminium MMCs). In this review, aluminium, magnesium, lead, depleted uranium, and stainless steel MMCs are evaluated. Reinforcement constituents used in the above MMCs include boron, graphite, silicon carbide, alumina, mica, and tungsten.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call