Abstract

Previous corrosion studies identified the materials Hastelloy C4, Ti 99.8-Pd, and carbon steels as promising for the manufacture of long-lived high-level waste containers that could act as an engineered barrier in a rock-salt repository. Here, the efficiency of the corrosion-resistant concept using surface-welded Hastelloy C4 as corrosion protection of carbon steel containers is compared with the corrosion-allowance concept using unalloyed or low-alloyed steels. The materials are examined in three disposal relevant brines (two rich in MgCl2, one rich in NaCl) at 150°C. The results indicate that welded Hastelloy C4 is highly resistant to corrosion in the NaCl-rich brine. In the presence of sulfides or MgCl2-rich brines, however, severe pitting corrosion occurs. The three steels investigated are resistant to pitting corrosion in all brines, and their general corrosion rates imply corrosion allowances acceptable for thick-walled containers. In view of these results, carbon steels continue to be considered promising materials for long-lived containers. Further investigations on carbon steels and Ti 99.8-Pd as alternatives to Hastelloy C4 are in progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.