Abstract

AbstractP91 ferritic‐martensitic steel, 17Cr–13Ni and alloy 800 austenitic stainless steels and Inconel 617 alloy have been aluminised to form Fe2Al5, (Fe,Ni)Al and Ni2Al3 aluminide coatings. These alloys and their corresponding coatings were subjected to corrosion in air by 50:50 mol/mol K2SO4/KCl deposits at 650 °C for 300 h. With the exception of the Inconel 617 alloy, significant metal losses (>180 µm) were recorded. These losses were planar for P91 alloy but involved internal corrosion for the two austenitic steels. The (Fe,Ni)Al and NiAl coatings on the austenitic steels and the Inconel 617 alloy were significantly corroded via intergranular and internal chloridation–sulphidation–oxidation. In contrast, the Fe2Al5 coating on the P91 alloy coating was virtually unattacked. For the alloys, the relative extents of corrosion damage can be explained in terms of the stability and volatility of metal chlorides formed. For the coatings, STEM/EDS analyses enable clear linkages to be made between the presence and number of Cr‐rich particles on coating grain boundaries and the corrosion damage observed for the coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call