Abstract

Abstract Alloy 625 (UNS N06625) is used frequently as a reactor material for the oxidation of hazardous organic wastes in supercritical water (supercritical water oxidation [SCWO]). In the presence of chloride (Cl−) and oxygen (O2), all Ni-based alloys corrode fast in high-temperature, subcritical water. High-pressure, high-temperature-resistant tube reactors made of alloy 625 were used as specimens. Coupons were exposed simultaneously inside the test tubes. Experimental conditions included temperatures up to 500°C and pressures up to 38 MPa. Pitting corrosion was observed at temperatures above ≈ 130°C to 215°C. At higher temperatures (up to the critical temperature of water), transpassive dissolution dominated. Under certain conditions, transgranular stress corrosion cracking (TGSCC) appeared in the transition zone between the passive and transpassive regions leading to premature failure of the test reactors. Parts of the corrosion products were insoluble in supercritical water and formed thick layers in...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.