Abstract

9Cr–1Mo steel forms in CO2 at 550 °C a duplex oxide layer containing an outer magnetite scale and an inner Fe–Cr rich spinel scale. The inner spinel oxide layer is formed according to a void-induced oxidation mechanism. The kinetics of the total oxide growth is simulated from the proposed oxidation model. It is found that the rate limiting step of the total oxide growth is iron diffusion through high diffusion paths such as oxide grain boundaries in the inner Fe–Cr rich spinel oxide layer. In the proposed oxidation model, a network of nanometric high diffusion paths through the oxide layer allows the very fast supply of CO2 inside pores formed at the oxide/metal interface. Its existence is demonstrated to be physically realistic and allows explaining several observed physical features evolving in the oxide layer with time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call