Abstract

The current study focuses on investigating the corrosion-inhibitory characteristics of the Schiff base (E)-N-benzylidene-4-nitrobenzenamine. The efficacy of the compound in preventing mild steel (MS) corrosion in a 1 M HCl solution was assessed using mass loss, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques (EIS). In addition, measurements of polarization resistance suggested that the substance functions as a mixed-type inhibitor, primarily functioning as a cathodic inhibitor. EIS revealed that the compound impedes corrosion by increasing the charge transfer resistance at the interfaces between the metal and solution. The (E)-N-benzylidene-4-nitrobenzenamine compound conformed to the Langmuir adsorption isotherm. Additional confirmation of the development of a protective layer on MS surfaces was established through examinations using SEM (Scanning Electron Microscopy), and AFM (Atomic Force Microscopy). DFT (Density Functional Theory) studies and MD simulations were utilized to augment comprehension of corrosion inhibition mechanisms and adsorption characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call