Abstract
Carbohydrate compounds are recognized potent green corrosion inhibitors owing to their structural properties and eco-friendliness. This study showed the effectiveness of glucosamine sulfate (GAS), an eco-friendly green inhibitor, in mitigating the deterioration of 6061 aluminium alloy reinforced with 2% SiC and 2% B4C hybrid composite (6061AA-HMMC) material in 0.1 M hydrochloric acid (HCl) medium. Electrochemical measurements were carried out to quantify the corrosion rate in the absence and presence of the GAS. The results were included in an acceptable adsorption isotherm model, and a suitable mechanism for the corrosion inhibition process was discussed in detail. To comprehend the method of adsorption, the Freundlich isotherm model was applied. Different characterization techniques were used to verify the adsorption of the investigated inhibitor. The optimized structure of the GAS was analysed using density functional theory to provide further insight into its interaction with the metal surface. The infrared (IR) and UV-visible (UV) spectra for the adsorption of the inhibitor molecule were compared with the IR and UV spectra calculated by B3LYP/6-311++G(d, p).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.