Abstract

In cermet coatings with both ceramic and metal present, these can have very different corrosion potentials. Therefore, determination of the corrosion behaviour performance and its mechanism is crucial, especially in very acidic and alkaline environment. A conventional high velocity oxy-fuel (HVOF) tungsten carbide (WC)-Co coatings and a weld overlay tungsten carbide-nickel alloy cermet with carbide size of ~0.3-5 mm and ~50-140 mm respectively are used. Potentiodynamic tests are carried out in acidic and alkaline electrolytes: 0.5 M sulphuric acid, pH 0.45 and bentonite drilling fluid, pH 10.45. The behaviour of both coating types tested were pH dependent. The HVOF coating showed preferential dissolution of the binder in both electrolytes, with material loss being approximately twice as severe in the 0.5 M sulphuric acid compared to the alkaline drilling fluid. For the weld overlay coatings, with the larger carbide particles, the Ni3B phase in the binder was preferentially removed in the acidic electrolyte whereas the Ni rich dendritic phase underwent preferential dissolution in the alkaline environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call