Abstract

This paper investigates the corrosion behaviour of Zn-27Al based hybrid composites reinforced with quarry dust (QD) and silicon carbide particles (SiCp). The Zn-27Al hybrid composites containing 8 wt% and 10 wt% SiCp-QD particles reinforcement with varied weight percentage of 0, 25, 50, 75 and 100% quarry dust respectively were synthesized using stir casting technique. The corrosion behaviour of the composites was investigated in 0.3M H2SO4 and 3.5 wt% NaCl solution at 25oC using electrochemical methods in accordance with ASTM G59-97(2014) standard. The results show that for 8 wt% reinforcement, the hybrid composites A2 and A3 (corresponding to 50% SiCp: 50% QD and 25% SiCp: 75% QD respectively) having corrosion rate of 0.006 mmpy displayed superior corrosion resistance. For 10 wt% reinforcement, hybrid grades B1 (75% SiCp: 25% QD), B2 (50% SiCp: 50% QD) and B3 (25% SiCp: 75% QD) has superior corrosion rate of 0.0172, 0.0126 and 0.0135 mmpy respectively while B4 (corresponding to 100% QD) shows the most superior corrosion rate of 0.00315 mmpy when compared with the monolithic alloy having corrosion rate of 0.213 mmpy all in marine environment (3.5 wt% NaCl solution). However, except for composite grade A2 with 0.055 mmpy corrosion rate and B4 (corresponding to 100% QD) with superior corrosion rate of 0.0143 mmpy in 0.3M H2SO4 medium, all other composite grades performed poorly in the acidic medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call