Abstract

The objective of this research is to estimate the durability of low-calcium fly ash based geopolymer mortar (FA-GPm) in comparison with sulphate resistant Portland cement mortars (SRPCm) exposed to natural sewer environment. Their performance is also investigated in the sulphuric acid (H2SO4) solution to highlight the difference in the corrosion mechanisms between these two exposure conditions. Mortar samples were removed from natural sewer and 1.5 % sulphuric acid solution after 12, 24 months and 6 months of exposure, respectively. Visual and physical analyses showed greater neutralization and loss in alkalinity in FA-GPm compared to SRPCm. However, mass loss and strength reduction observed for SRPCm was greater compared to FA-GPm. Microstructural analysis showed widespread gypsum crystallization within SRPCm matrix compared to FA-GPm, leading to more severe matrix deterioration. Differences in corrosion mechanism were identified between natural and sulphuric acid exposure conditions which led to the variation in estimated corrosion depth. Data collected from these microstructural and physical investigations were utilized to develop simplified linear models to express the depth of corrosion, surface pH, mass loss and neutralization depth of FA-GPm and SRPCm as a dependent of exposure time, temperature and H2S concentration in natural sewer environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call