Abstract

The inhibition efficiency (IE) of an aqueous extract of white flower, namely, Hibiscus rosa-sinensis Linn., in controlling corrosion of carbon steel immersed in an aqueous solution containing 60 ppm of Cl−has been evaluated by the mass loss method. The flower extract (FE) shows good IE. In the presence of Zn2+, excellent IE is shown by the flower extract. A synergistic effect exists between the flower extract and Zn2+. The mechanistic aspects of corrosion inhibition have been investigated by polarization study and AC impedance spectra. Polarization study reveals that the formulation consisting of flower extract and Zn2+ functions as a mixed inhibitor. AC impedance spectra reveal that a protective film is formed on the metal surface. The active principle in the flower extract is quercetin-3-O-glucoside. This has been confirmed by UV-visible absorption spectra. The protective film formed on the metal surface has been analyzed by FT-IR and AFM spectra. It is found that the protective film consists of Fe2+-quercetin-3-O-glucoside complex and Zn(OH)2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call