Abstract

Aluminum foil is frequently used as a cathodic current collector for batteries because of its high electrical conductivity, low cost, robust electrochemical properties, and low density. However, as next-generation batteries are created, severe corrosion poses new challenges to aluminum current collectors, especially with no effective additive in an aqueous electrolyte so far. 5-formyl-8-hydroxyquinoline (FHQ) is designed and synthesized as an effective corrosion inhibitor for aluminum foil. Its corrosion inhibition efficacy and the passivation film are assessed by electrochemical methods and spectroscopy techniques. The corrosion rate in millimeters per year (mmpy) measured in the aqueous electrolyte of 21 m LiTFSI with the FHQ additive 1.37 × 10−3 mmpy is much lower than 2.29 × 10−2 mmpy in the unmodified electrolyte. Meanwhile, the Zn//LVPF configuration is developed as an efficient protocol to evaluate the corrosion prevention efficiency of inhibitors in an aqueous-based battery for the first time. The Zn//LVPF cell in the aqueous electrolyte with the FHQ additive provides much higher capacity retention and average Coulombic efficiency. Interestingly, the Al corrosion prevention efficiency of the developed additive is also testified in an organic electrolyte-based battery. This work paves a new pathway to develop effective Al corrosion inhibitors for lithium-ion batteries, especially in aqueous electrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.