Abstract

With the aim of developing Cr-bearing rebars having required resistance to deteriorative environments prone to carbonation with or without chloride attack, ten types of steel bars having different Cr contents were embedded in concretes with chloride ion contents of 0, 0.3, 0.6, 1.2, and 2.4 kg/m3 to fabricate specimens assuming such deteriorative environments. After being carbonated to the reinforcement level, these concretes were subjected to corrosion-accelerating cycles of heating/cooling and drying/wetting. The time-related changes in the corrosion area ratio and corrosion loss of the Cr-bearing rebars were then measured to investigate their corrosion resistance. The results revealed that the Cr content required for corrosion resistance in a simple carbonating environment was 5% or more. The corrosion-resisting performance of Cr-bearing rebar was particularly noticeable with a Cr content of 7% or more. In a deteriorative environment prone to both carbonation and chloride attack, corrosion resistance was evident with a Cr content of 7% or more and 9% or more in concretes with chloride ion contents of 1.2 and 2.4 kg/m3, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.