Abstract
This work aims to assess the influence of corrosion on fracture of nickel titanium (NiTi) superelastic wires in physiological solutions (9 g/l NaCl) with and without addition of 1 g/l NaF. The electrochemical cell was coupled to a Hounsfield Tensiometer tensile machine commonly used for corrosion investigation of alloys under stress and strain. Corrosion tests were performed on unstrained and strained conditions up to 4% total strain. This strain limit corresponds to 50% of the total elongation achieved into the superelastic stress plateau of the alloy. All wire specimens were analyzed after testing by scanning electron microscopy (SEM). The results showed that localized corrosion occurred for NiTi wires in solution containing fluoride, while no corrosion attack was detected in NaCl 9 g/l solution. There was no significant difference between the corrosion resistance of unstrained and strained wires. However, brittle like fracture occurred in NaCl + NaF solution within the superelastic domain of the material. The most relevant conclusion achieved is that the use of superelastically strained NiTi in oral environments in the presence of fluoride is followed by significant risk of corrosion induced fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.