Abstract

The failure of a high-pressure fire-extinguishing cylinder was investigated. Failure was induced by internal surface corrosion and stress corrosion cracking (SCC) due to condensation of carbonic acid. In internal surface, especially the area near the bottom of the exploded cylinder, severe corrosion was characterized by local pits. SCC initiated from these local corrosion pits was observed by metallurgical analysis. Microstructure of the failure cylinder near the internal surface consisted of multiple-banded structure and the banded structure could accelerate local corrosion initiation and propagation. The corrosion products built up on the fracture surface were primarily ferrous carbonate (FeCO3). The determination of moisture in fire-extinguishing gas was also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.