Abstract

Corrosion in bioprocessing applications is described for a 25-year-old bioprocessing pilot plant facility. Various available stainless steel alloys differ greatly in properties owing to the impact of specific alloying elements and their concentrations. The alloy property evaluated was corrosion resistance as a function of composition under typical bioprocessing conditions such as sterilization, fermentation, and cleaning. Several non-uniform forms of corrosion relevant to bioprocessing applications (e.g., pitting, crevice corrosion, intergranular attack) were investigated for their typical causes and effects, as well as alloy susceptibility. Next, the corrosion resistance of various alloys to specific bioprocessing-relevant sources of corrosion (e.g., medium components, acids/bases used for pH adjustment, organic acid by-products) was evaluated, along with the impact of temperature on corrosion progression. Best practices to minimize corrosion included considerations for fabrication (e.g., welding, heat treatments) and operational (e.g., sterilization, media component selection, cleaning) approaches. Assessments and repair strategies for observed corrosion events were developed and implemented, resulting in improved vessel and overall facility longevity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call