Abstract

ABSTRACTRotary bending fatigue tests have been performed in 3%NaCl aqueous solution using specimens of a low alloy steel (Cr–Mo steel) with different nitride case depths. The effect of case depth on corrosion fatigue strength, the fracture process and mechanisms were studied. The corrosion fatigue strengths of the nitrided materials increased compared with the untreated material and increased with increasing thickness of the compound layer, but tended to saturate above a certain thickness. All the materials showed lower fatigue strength in 3%NaCl aqueous solution than in laboratory air and the reduction of fatigue strength decreased with increasing thickness of the compound layer, but remained nearly constant above a certain thickness. Corrosion pits were seen underneath the compound layer, from which cracks initiated. The corrosion fatigue strengths of the specimens whose compound layer was completely removed by electropolishing were almost the same as that of the untreated material, indicating a very significant role of the compound layer in improving corrosion fatigue strength. Because of the porous nature of the compound layer, particularly in the surface‐adjacent part, the solution penetrated the compound layer and reached the base steel, thus the corrosion fatigue strength of the nitrided materials was controlled by the penetration of corrosive media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call