Abstract

Additively manufactured biodegradable zinc (Zn) alloy scaffolds constitute an important branch in orthopedic implants because of their moderate degradation behavior and bone-mimicking mechanical properties. This work investigated the corrosion fatigue response of a zinc-magnesium (Zn-Mg) alloy gyroid scaffold fabricated via laser-powder-bed-fusion additive manufacturing at the first time. The high-cycle compression-compression fatigue testing of the printed Zn-Mg scaffold was conducted in simulated body fluid, showing its favorable fatigue strength, structural reliability, and anti-fatigue capability. The printed Zn-Mg scaffold obtained a 227% higher fatigue strength than that of the printed Zn scaffold but 17% lower strain accumulation at 106 cycles. The accumulative strain of the Zn-Mg scaffold at its fatigue strength was dominant by fatigue ratcheting, since the fatigue damage strain of the scaffold was approximately zero. The corrosion products (ZnO and Zn(OH)2) were conducive to the inhibition of fatigue ratcheting and fatigue damage. Dislocation pile-up and solid solution phases at the grain boundaries of the Zn-Mg scaffold could retard the spreading of the crack tip and impede excessive grain coarsening, improving its fatigue endurance limit. Notably, the printed Zn-Mg scaffold could dissipate the fatigue energy through moderate grain boundary migration, thus reducing its plastic deformation. These findings illuminated the anti-fatigue mechanisms related to microstructural features and corrosive environments and highlighted the promising prospects of additively manufactured Zn-Mg scaffolds in orthopedic applications. Statement of significanceAdditive manufacturing (AM) of biodegradable metals shows unprecedented prospects for bone tissue regeneration medicine. The corrosion fatigue property is one of the key determinants in the performance of AM biodegradable scaffolds. In this study, a Zn-Mg gyroid scaffold was additively manufactured with admirable fatigue endurance limit and anti-fatigue capability. We reported that the corrosion fatigue performance was highly relevant to the microstructural features, validating that the grain boundary engineering strategy improved fatigue strength and inhibited crack penetration. Notably, moderate grain boundary migration could dissipate fatigue energy and reduce plastic deformation. Furthermore, corrosion products were conducive to impeding fatigue ratcheting and fatigue damage, indicating the promising potential of AM Zn-Mg scaffolds in treating load-bearing bone defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.