Abstract

Abstract The operating temperature of a steam turbine is limited to 565 oC by the molten nitrate heat-transfer fluid; therefore, a new molten salt chemistry is needed to increase the maximum operating temperature in the new generation of CSP plants and improve the thermal-to-electrical energy conversion efficiency in the turbine block, such as chloride molten salts. Nevertheless, the prevention of high-temperature corrosion on containment materials using chlorides plays a critical role and a corrosion mitigation plan is needed to achieve the target plant lifetime of 30 years. This paper presents a corrosion mitigation strategy focused on different thermal treatments performed in the eutectic ternary chloride molten salt composed by MgCl2/NaCl/KCl (55.1 wt.%/24.5 wt.%/20.4 wt.%). Corrosion rates were obtained through linear polarization resistance technique in a conventional commercial stainless steel (AISI 304) at 720 oC during 5 h of immersion after the different thermal treatments carried out. Scanning electron microscopy and XRD analysis were used to confirm the corrosion rates and corrosion layer proposed by electrochemical techniques, obtaining a minimum corrosion rate of 6.033 mm/year for the best thermal treatment performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.