Abstract

The corrosion-electrochemical behavior of nanocomposites of the “aluminum-nano-aluminum oxide” system, formed by direct chemical interaction of molten aluminum with titanium nanooxide in an environment of molten alkali metal chlorides at temperatures above 700оC, has been studied. Nanoalumina crystals in the α-Al2O3 modification, uniformly distributed throughout the volume of the metal matrix, were detected by means of electron microscopy and X-ray diffraction. The corrosion rate in 0.5M NaCl, determined by the gravimetric method, decreases by 3–4 times when moving from initial aluminum to Al-Al2O3 composites, while the nature of corrosion changes from pitting to uniform and the corrosion resistance class from 3 (resistant) to 2 (very persistent). This is due to the formation of a denser single-phase hydroxide coating on the surface of the composite compared to a two-phase loose coating on aluminum. The corrosion potential is not affected by the incorporation of aluminum oxide nanoparticles into the aluminum matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call