Abstract

Corrosion can affect the service life and reliability of electronic devices, in addition, corrosion products may flow out with sweat and enter the body through skin. In the current study, mechanical and biological corrosion experiments were performed to explore the mechanical properties and secondary biological hazards of nano-silver paste in the corrosive environment. The effects of corrosion time on shear strength and corrosion products of sintered nano-silver joints on biological organism were investigated. The survival rate of hamster lung cells was measured by MTT assay and flow cytometry after cultured in nutrient solution containing different concentration of nano-silver particles. Experimental analysis reveals that the shear strength of sintered nano-silver joint decreases drastically with the increasing of corrosion time, and the fracture mode changes from interlayer to interfacial fracture. A modified Weibull statistical model was proposed to predict the average failure strength and probability of sintered nano-silver joints at different corrosion time. In addition, biological experiment demonstrates that with increasing of nano-silver particles concentration, the survival rate of hamster lung cells firstly increases and then decreases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call