Abstract
This study documents the specific effects of CO/sub 2/ on corrosion and identifies promising methods for controlling corrosion in fields using CO/sub 2/ injection. Information has been assembled on: CO/sub 2/ corrosion problems in general, surface and downhole corrosion problems specifically associated with CO/sub 2/ enhanced oil recovery, and methods to reduce corrosion problems in CO/sub 2/ environments. Corrosion mechanisms, kinetic behavior, and the effects of various parameters on corrosion by CO/sub 2/ are presented in this study. Engineering metals are not attacked by CO/sub 2/ under oil field environments unless liquid water is also present. Plain and low alloy steels are attacked by mixtures of CO/sub 2/ and liquid water. Attack on these bare metals may become serious at a CO/sub 2/ partial pressure as low as 4 psi and it increases with CO/sub 2/ partial pressure although not in direct proportion. Fluid flow rate is an important factor in CO/sub 2//water corrosion. Practically all stainless steels and similar resistant alloys are not particularly subject to corrosion by CO/sub 2//water mixtures alone, even at high CO/sub 2/ pressures. Elevated levels of CO/sub 2/ can aggravate the corrosive effects of other species such as hydrogen sulfide, oxygen, and chloride. Mixturesmore » of CO/sub 2/, carbon monoxide (CO), and water can cause stress corrosion cracking of plain steels. Corrosion problems in CO/sub 2/ systems should be circumvented when possible by avoiding combination of the corrosive components. Although water cannot be excluded throughout the CO/sub 2/ injection-oil production-CO/sub 2/ and water reinjection chain, air in-leakage can be minimized and oxygen scavengers used to remove any residual. Exclusion of oxygen is important to the successful use of other corrosion control measures. A discussion is given of the main control methods including metal selection, protective coatings and nonmetallic materials, and chemical inhibition. (DLC)« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.