Abstract

In this paper, to study the development of load-carrying capacity and long-term creep performance of reinforced concrete beams under different corrosion patterns, the rate-dependent model of concrete is used as the basis to consider the creep development process from the meso-scale level. The porosity mechanics method is used to simulate the generation and penetration process of corrosion products. Three corrosion conditions are set: bottom longitudinal reinforcement corrosion, top longitudinal reinforcement corrosion and all reinforcement corrosion. The corrosion rate is used as the variable in each corrosion condition. The results show that: (1) the greater the corrosion rate in all conditions, the lower the bearing capacity. In addition, the corrosion of top longitudinal reinforcement causes the damage form of the beam to change to brittle damage; (2) the creep coefficient decreases with the increase in corrosion rate in all working conditions, but the main factor for this phenomenon is the obvious increase in initial deformation. Consequently, it is not suitable to follow the conventional creep concept (deformation development/initial deformation) for the development of plastic deformation of damaged members. It is more reasonable to use the global deflection to describe the long-term deformation of corrosion-damaged members.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.