Abstract

Copper trihydroxychlorides, which are known as “bronze disease”, are dangerous corrosion products that compromise the stability and conservation of bronze sculptures. Here, we performed artificial patina corrosion experiments on quaternary bronze (Cu-Zn-Sn-Pb) to examine the corrosion behavior of the chloride patina commonly found in bronze objects in marine environments. The chromaticity and reflectance of the patina in the context of the corrosion products indicate that copper trihydroxychloride, which is commonly found in a single color in marine environments, was produced early in the corrosion experiment. Furthermore, the corrosion of bronze had different effects on the alloying elements, contrary to pure copper corrosion. The chloride patina formed a single patina layer of copper trihydroxychlorides. This patina layer was divided into the outer porous powder and inner uniform layers. Furthermore, the interaction of oxygen in the atmosphere with the corrosion layer and internal oxidation of tin in the alloy promoted powdering. These results provide important basic data for research on sculpture conservation and corrosion characteristics, such as changes in color, chemical composition, and corrosion products on the patina surfaces of outdoor bronze sculptures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call