Abstract

4 Mo Zr-0.4Fe-1.0Cr-xMo(x=0, 0.2, 0.4, 0.6, , ABSTRACT The possibility of using Mo as an alloying element in zirconium alloys was considered in terms of its strengthening effect and microstructure refinement effect. However, the impact of Mo addition on the corrosion resistance was not fully understood. In this work, Zr-0.4Fe-1.0Cr-xMo (x=0, 0.2, 0.4, 0.6, mass fraction, %) alloys with addition of different Mo contents were prepared by vacuum arc melting method and their corrosion resistance in 500 , 10.3 MPa steam was investigated. Compared with Zr-4, N18 and M5 alloys, the corrosion rate of Zr-0.4Fe-1.0Cr-xMo alloys was much lower, which was attributed to the large numbers of fine second phase particles in the matrix. Addition of Mo improved the evolution of the oxide film during growth and resulted in the degradation of corrosion resistance. The growth of the oxides remained cubic kinetics in the whole corrosion period (2000 h) for the Mo free alloy, whereas changed from cubic to linear kinetics after a corrosion time of 500—1000 h for the Mo containing alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.