Abstract

Diamond like carbon (DLC) coatings posses high hardness and low friction coefficient and also biocompatible, hence, they are of interest for enhancing the wear and corrosion resistance of bio-implant materials. Beta stabilized titanium alloys are attractive for biomedical applications because of their high specific strength and low modulus. In this work Beta-21S alloy (Ti–15Mo–3Nb–3Al–0.2Si) was implanted with carbon ions by plasma immersion ion implantation using methane and hydrogen gas mixture followed by DLC deposition by plasma enhanced chemical vapour deposition (PECVD). The implanted layers enabled deposition of adherent diamond-like carbon coatings on the titanium alloy which was otherwise not possible. The corrosion behavior of the treated and untreated samples was investigated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies in simulated body fluid (Hank's solution). XPS, micro Raman and EDAX investigation of the samples showed the formation of a thin oxide layer on the treated samples after corrosion experiments. Corrosion resistance of the DLC coated sample is comparable with that of the untreated samples. Electrochemical impedance data of the substrate and implanted samples were fitted with two time constant equivalent circuits and that of DLC coated samples with two-layer model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call