Abstract

Open-circuit potential (OCP), polarization curve, and electrochemical impedance spectroscopy (EIS) mea- surement were used to investigate the corrosion behaviors of high-strength low-alloy (HSLA) steel and mild steel in seawater. Both steels were used in the construction of a huge oil storage tank. The OCP results show that the HSLA steel quickly reached more negative EOCP values than the mild steel. Polarization curve results reveal that the HSLA steel exhibits higher corrosion currents and more negative corrosion potentials than the mild steel. EIS measurements reveal that both steels exhibit similar corrosion behaviors up to 144 h, one increased capacitance loop can be shown in EIS diagrams. The mild steel presents higher corrosion resistances than the HSLA steel at former stage, which is associated with the effect of the grain size. After 240 h of immersion, both steels present different corrosion behav- iors. The EIS diagrams exhibit two capacitance arcs for the HSLA steel and one capacitance arc for the mild steel, which is due to the formation of intact corrosion scales on the electrode surface of the HSLA steel as to introduce a new reaction interface. The HSLA steel exhibits higher corrosion resistances than the mild steel at latter stage of experiment, which is ascribed to the synthetic actions of residual Fe3C and the protective property of corrosion products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call