Abstract

Steel reinforcement in concrete containing fly ash has been practically employed to RC structures in snowy cold region and coastal areas so that the durability of the structures against corrosion can be enhanced. In this research to make the compatibility with RC slab bridge sodium chloride solution of 10[WU1] % in concentration was applied on RC slab and corrosion development was monitored by electrochemical method. Applying fly ash in RC slab at two replacement levels of 15[WU2] % (F15) and 30% (F30) of cement the specimens were observed. The observation result verified that fly ash concrete showed longer period of corrosion initiation (ASTM C876) than normal reinforced concrete. The initiation period of corrosion was 4.5 and 6 times longer for F15 and F30 concrete than normal concrete, as well as 91 days strength of F30 concrete was about 14% higher that of norma concrete. Test result showed that fly ash has better influence on steel corrosion reduction than concrete cover increment. It was observed that fly ash concrete (F15 and F30) with 3 cm concrete cover has better corrosion resistivity than using 4 cm cover of non-fly ash concrete. Furthermore, using the same concrete cover (3 cm) it was found that the actual corrosion rate was decreased about 68 to 82% by adding fly ash 15 to 30% respectively compared to normal reinforced concrete. In addition, a significant attenuation in corrosion area in rebar between fly ash concrete and normal concrete was found. Based on actual corrosion area on rebar surface, actual corrosion current density was larger than corrosion current density found from non-destructive way. Moreover, further analysis was conducted for characterization of different corrosion products using Raman spectroscopy with 532 nm wave length. It revealed that the corrosion product (Oxides and Oxyhydroxides compound) were less in F15 and F30 concrete compared to normal concrete. Considering these results, the possibility of reduction of chloride induced corrosion in reinforced concrete structure using fly ash has confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.