Abstract

Localized corrosion is a serious, hazardous destroyer of steel petroleum pipelines meant for long-time use. However, previous studies on localized corrosion primarily focused on local corrosion morphology and corrosion rate of bulk metals because detecting the corrosion state of occlusive metals is difficult. Herein, we employ a simulating occluded battery unit to disclose the local corrosion behavior of the steel petroleum pipeline (N80 steel) in an occlusive S2–-enriched solution. After simulating localized corrosion in the S2–- containing corrosion solution using the occluded battery unit, the occlusive solution was acidified and the migration amount of S2– to the occluded area increased. Despite the increase of S2– concentration, the addition of quinoline corrosion inhibitor (0.8 wt%) still effectively impedes the corrosion of the occluded metal. Moderately raising the environmental temperature can stimulate the activity of the inhibitor and promote the inhibition effect. The quinoline corrosion inhibitor displays the maximum inhibition rate at an elevated temperature of 50°C. Meanwhile, a maximum over the temperature of 60°C-70°C will likely accelerate the failure of the inhibitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.