Abstract

Pd-based alloys are major alternatives to gold-based alloys for PFM applications. In electrolytes simulating oral fluids, these alloys exhibit electrode behavior similar to passivity of active metals, i.e., a potential region of almost constant current density up to a critical potential, above which the current increases. The objective of this study was to correlate the electrode behavior with the results of solution analyses and changes in the surface composition of the alloys. Binary alloys Pd-15 wt% Cu and Pd-19 wt% Co, as well as the pure components, were examined. Corrosion potentials vs. time, potentiodynamic anodic polarization curves, polarization resistances vs. time, and potentiostatic anodic charges were measured with synthetic saliva used as the electrolyte. The concentrations of Pd, Cu, and Co in the solution after various exposures were determined by atomic absorption. The surfaces of the alloys were examined by x-ray photoelectron spectroscopy before and after the exposures. The results show that selective dissolution of the less-noble components occurred on the surfaces of both alloys for all the exposures, leaving the surfaces highly enriched in Pd. This enrichment contributed to the potential changes and the passive-type behavior. Copper dissolved more than cobalt at longer exposures and higher potentials, in spite of its higher nobility. Dissolution of cobalt seemed to be limited by the formation of a surface film, which may be related to the transition character of this element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call