Abstract

The present study reports the glass-forming ability, density change on crystallization and corrosion behavior of newly developed rare-earth free Cu-based metallic glasses (CBMGs). The critical casting thickness of these new CBMGs increased from 15 mm at 8 at.% Hf to 22 mm at 12 at.% Hf, reaching a maximum value of 28.5 mm at 13.5 at.% Hf. It dropped to 24 mm and 15 mm thereafter, for 15 and 20 at.% Hf, respectively. The alloys showed a monotonic increase in density going from 8 at.% Hf to 20 at.% Hf, with the density of amorphous samples increasing from 7.83 g/cm3 to 8.84 g/cm3 and crystallized samples increasing from 7.92 g/cm3 to 8.91 g/cm3. Potentiodynamic polarization tests carried out in 0.1, 0.2 and 0.5 M NaCl solution at 25 °C showed a direct correlation between corrosion resistance and Hf content in the order: 8 at.% < 13.5 at.% < 20 at.% Hf. Increase in NaCl concentration also had a significant impact on the corrosion intensity due to the chaotropic effect. Scanning electron microscopy of corroded sample surfaces showed formation and eventual merging of individual micro cracks resulting in a mud-cracking pattern. Energy-dispersive X-ray spectroscopy maps of pitted regions revealed reduction in Zr and Al concentration with increase in Hf and Cu percentage for all compositions. An increase in the O concentration along with the appearance of new peaks in the X-ray photoelectron spectroscopy results, measured post corrosion, confirmed the formation of metal oxides and oxyhydroxides in the passive layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.