Abstract

This paper investigated the influence of dry-wet cycles and sulfate attack on the performance of magnesium potassium phosphate cement (MKPC) as well as the effect of waterglass on MKPC. X-ray diffraction (XRD), TG-DTG, and scanning electron microscopy (SEM-EDS) were used to examine the phase composition and microstructure of MKPC. The results showed that the flexural and compressive strength of an MKPC paste increased initially and subsequently decreased in different erosion environments. The final strength of the M0 paste exposed to the SK-II environment was the highest, while that of the M0 paste exposed to the DW-II environment was the lowest. The final volume expansion value of MKPC specimens under four corrosion conditions decreased in the following order: DW-II, M0 > SK-II, M0 > DW-II, M1 > SK-I, M0 > DW-I, M0. Compared to the full-soaking environment, the dry-wet cycles accelerated sulfate erosion and the appearance of damages in the macro and micro structure of the MKPC paste. With the increase in the number of the dry and wet cycles, more intrinsic micro-cracks were observed, and the dissolution of hydration products was accelerated. Under the same number of dry-wet cycles, the strength test and volume stability test showed that the durability in a Na2SO4 solution of the MKPC paste prepared with 2% waterglass (M1) was superior to that of the original M0 cement. The micro analysis indicated that waterglass can improve the compactness of the microstructure of MPC and prevent the dissolution of struvite-K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.