Abstract

The purpose of this paper is to reveal the corrosion behavior of J55 and N80 carbon steels in formation water under oil wells at different partial pressures, explore the formation process of corrosion product films under supercritical CO2 conditions, and analyze the reasons why the microstructure of carbon steel affects the corrosion behavior. The results show that the corrosion rate gradually increases with the increase in CO2 partial pressure. When the pressure exceeds 10 MPa, the corrosion rate of J55 increases slightly, and that of N80 decreases slightly. Under different partial pressures, the surface composition of the corrosion product film of J55 steel is FeCO3, and that of N80 steel is FeCO3 with a small amount of Fe3C. The analysis shows that the corrosion product films of two kinds of carbon steels can be divided into three layers under the condition of supercritical CO2. There are holes in the middle layer, which are formed first, and then the inner layer and the outer layer are formed at the same time. It is believed that the difference in the morphology and distribution of Fe3C is the reason why the corrosion rate of J55 steel is lower than that of N80 steel. Fe3C in J55 steel is lamellar, which can anchor FeCO3, promote the formation of corrosion product films, and improve the compactness of corrosion product films. However, the Fe3C in N80 is granular and dispersed in the ferrite matrix, which makes it easy to fall off the surface, form pits, and destroy the integrity of the corrosion product film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call