Abstract

The aim of this paper is to evaluate the efficiency of hybrid sol-gel coatings reinforced with electrospinning nanofibers doped with cerium nitrate and ceria particles to increase the corrosion properties of the coating. Poly(vinyl alcohol) solutions doped with cerium nitrate and ceria were electrospun onto clean commercial aluminum alloy AA2024-T3 plates and then coated with a hybrid sol-gel system using the dip-coating procedure. The hybrid materials synthesized via sol-gel chemistry were prepared from inorganic-organic precursors: zirconium (IV) propoxide and 3-glycidoxypropyltrimetoxysilane. The electrochemical impedance spectroscopy technique was applied to evaluate the electrochemical properties of the film whereas scanning electron microscopy and atomic force microscopy were employed to characterize the surface characteristics. The incorporation of nanofibers into the sol-gel system provides good barrier properties that increase the corrosion resistance of the aluminum at longer exposure times in saline media. This protection depends of the type of inhibitor loaded within the electrospun nanofibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call