Abstract

The corrosion behavior of a nickel-based alloy Hastelloy C-276 exposed in supercritical water at 500–600 °C/25 MPa was investigated by means of gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. An oxide scale with dual-layer structure, mainly consisting of an outer NiO layer and an inner Cr 2O 3/NiCr 2O 4-mixed layer, developed on C-276 after 1000 h exposure. Higher temperature promoted oxidation, resulting in thicker oxide scale, larger weight gain and stronger tendency of oxide spallation. The oxide growth mechanism in SCW seems to be similar to that in high temperature water vapor, namely solid-state growth mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.